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Abstract

The plane strain response of a semi-infinite, elastic strip to harmonic, symmetric, and non-uniform end excitation is

investigated analytically. The solution is obtained as a series expansion of the Rayleigh–Lamb modes of the strip. The

variation of the energy partition among the propagating modes with the frequency of the end excitation was found for mixed

end conditions prescribed at the excited end (load and displacement types). The bi-orthogonality relation was employed in

deriving the relative amplitudes of each mode to the given excitation. It was found that the far-field response of the strip is

largely indifferent to whether the excitation is a displacement or stress type. The previously reported phenomenon of the

existence of one dominating wave in uniform excitation is shown to extend to moderately non-uniform excitations as well.

The phenomenon of complete dominance of one mode for generally non-uniform excitations was exposed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of harmonic excitation of an elastic semi-infinite strip is examined in the present paper. To the
best of the author’s knowledge, only uniform end excitations have been addressed analytically. Torvik and
McClatchey [1] investigated thoroughly the problem of a semi-infinite strip (0pxoN) in the plane strain
condition excited at its end (x ¼ 0) by a harmonic, uniform, axial force with zero transverse traction
(pure stress conditions) described by

s0x ¼ A0 e
�iot

t0xy ¼ 0
at x ¼ 0, (1)

where s0x, t
0
xy are the axial and the shear stresses at the end, respectively, and o the circular frequency of the

excitation (the real part of the expressions is understood throughout the paper).
A similar problem of a strip excited by uniform axial displacement with zero transverse traction at the end

(mixed condition)

u0 ¼ A0 e
�iot

t0xy ¼ 0
at x ¼ 0 (2)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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was solved by Gregory and Gladwell [2]. Here, u0 is the axial displacement at the end. The energy partition
among the available propagating modes was calculated as a function of the frequency of the excitation. In
both Refs. [1,2], it was noticed that most of the energy propagating down the strip axis (approximately 90% of
the total energy absorbed by the strip) is carried by a single mode having non-dimensional wavenumber k,
which is the closest in its value to the non-dimensional excitation frequency, O.

In the present paper, we consider the generation of waves by non-uniform, harmonic, and symmetric
excitations of two types of mixed end data: axial displacement with zero transversal traction (displacement

excitation) and axial load with zero transverse displacement (stress excitation). The generality of the previously
observed phenomenon of a single dominating wave mode carrying energy into the strip is questioned for
different cases of non-uniform excitation forms. To that end, three non-uniform excitations described by
simple symmetric functions were examined, as well as three special functions, having distributions identical to
three particular wave modes. The far-field steady-state response of a strip to these non-uniform excitations
was found analytically with the aid of the bi-orthogonality condition, which was proved to hold for Lamb
waves [3]. The analysis closely follows the one given by Gregory and Gladwell [2] (with a minor change in
definition of non-dimensional displacement field to be consistent with Ref. [4]).

The dominance of one mode is found to extend, in addition to when uniform excitations are applied, to
moderately non-uniform excitations (parabolic and half-cosine). Generally non-uniform excitations, on the
other hand, do not appear to expose the same dominance of one wave mode having kEO. Further inspection
of the results suggests that the two types of mixed end conditions (displacement and stress excitations), having
same form, expose similar energy partitions among the propagating modes, for any excitation form.

Complete dominance of one wave mode (conveying 100% of the total energy absorbed) is found to occur
for several non-uniform excitations. This happens not only when the excitation form matches exactly one of
the modes, but also when they differ.

In Section 2, the standard series method solution of a rectangular waveguide is outlined. In Section 3, we
derive the expressions for the calculation of the amplitudes of each propagating mode for symmetric modes for
the two mixed excitation conditions. The energy partition among the propagating wave modes for various
spatial distributions of end excitation for a range of frequencies is detailed in Section 4. A discussion of the
results is given in Section 5.
2. Strip under harmonic excitation

A semi-infinite strip with a thickness 2h consists of homogeneous, isotropic, elastic material and occupies
the region xX0, |y|ph, |z|oN as shown in Fig. 1. The strip can be held in the plane strain condition
(the z coordinate not active) while the faces y ¼7h, xX0, |z|oN are free of tractions. At the end x ¼ 0, a
harmonic and symmetric (with reference to the x–z plane) excitation is applied, with circular frequency o.

The problem is to determine the resulting steady-state response of the strip to that excitation and, in
particular, to determine the portion of the energy carried by each available propagating mode as a function of
the excitation frequency for several spatial forms of the end excitation.
Free surfaces

y

2h
x

Symmetric excitation F(y)e-i�t 

Fig. 1. Schematic view of a semi-infinite strip of thickness 2h on which symmetric excitation of form FðyÞ is applied at the end x ¼ 0.
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The equation of motion for a linearly elastic homogeneous material is

ðlþ mÞrðr � uÞ þ mr2u ¼ r€u, (3)

where l, m are the Lame constants, r the material density, r the gradient vector and u the displacement vector
of two components

u ¼ uiþ vj, (4)

where both components u, v depend only on x and y coordinates and time, t. Here, i, j are the unit vectors in
the x, y directions, respectively. Assuming a solution of the form

uðx; y; tÞ ¼ AUðyÞeiðxx�otÞ (5)

and imposing the stress free conditions on the long faces

sy ¼ txy ¼ 0; at y ¼ �h (6)

leads to the Rayleigh–Lamb frequency equation [5]

tan gh

tan dh
þ

4x2dg

ðx2 � g2Þ
2

 !�1
¼ 0, (7)

where g, d are defined in Eq. (A.4) in Appendix A. Here x is the wavenumber, U(y) is the associated cross-
sectional profile for both velocity components (wave mode), A is a complex valued amplitude, and the (7) sign
in Eq. (7) stands for symmetric and for antisymmetric fields, respectively.

Frequency equation (7) dictates a discrete relation between the frequency o and the wavenumber x. For a
given frequency, Eq. (7) can be fulfilled by real, complex or imaginary wavenumbers. Real wavenumbers
represent propagating waves. Complex and imaginary wavenumbers represent attenuating (or evanescent)
waves. Assuming this set is a complete set of solutions (e.g. Ref. [6]), displacement field (5) will take the form

uðx; y; tÞ ¼
X

n

AnUnðyÞ e
iðxnx�otÞ (8)

for any frequency o while the summation is taken over the infinite number of all wavenumbers. The real part
of Eq. (8) is understood to be the desired solution. At a given frequency, there are a finite number of real
wavenumbers N and an infinite number of imaginary and complex wavenumbers. Then, solution (8) can be
rewritten as

uðx; y; tÞ ¼
XN

n¼1

AnUnðyÞ e
i xnx�otð Þ þ

X1
n¼Nþ1

AnUnðyÞ e
ixnx e�iot. (9)

Here, the first summation represents waves propagating without attenuation (elastic material is assumed)
while the second term is the sum of the attenuating waves. The response of the strip far from the loaded end
(far field) therefore solely consists of the propagating waves, which are the subject of the present investigation.
The non-dimensional expressions for the displacement field (8) along with the expressions for the stresses, used
in the sequel, are given in Appendix A.

The actual amplitude of each mode An in Eq. (9) as well as its very excitation depends on the particular form
of the excitation applied to the strip. We assume here two types of mixed conditions prescribed at the end
x ¼ 0. Axial traction with no sliding is defined by

s0x ¼ mA0SðyÞ e
�iot

v0 ¼ 0
at x ¼ 0 stress excitation (10)

and axial displacement with no shear is given by

u0 ¼ A0UðyÞ e
�iot

t0xy ¼ 0
at x ¼ 0 displacement excitation; (11)
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where SðyÞ and UðyÞ are the form functions of the excitation and A0 the amplitude of the excitation. These two
types of excitations will be referred to as stress and displacement excitations, respectively.

It is the purpose of Section 3 to derive the expressions needed to find the amplitudes of the propagating
modes An. These amplitudes are required for the calculation of the portion of the outgoing energy in every
available propagating mode for various forms of excitation. This will further be used to unveil the dependence
of this energy partition on the frequency of the excitation for various forms of the excitation, SðyÞ or UðyÞ (for
sake of clarity, the argument y will be omitted in Section 3).

3. Wave amplitudes and energy partition

Let us begin with the stress excitation given by Eq. (10). Using the non-dimensional expressions (detailed in
Appendix A) with stresses asociated with the nth mode defined by

rnðyÞ ¼
sn

xðyÞ

tn
xyðyÞ

( )
¼ m

Sn
xðyÞ

Tn
xyðyÞ

( )
,

the axial stress and the transversal displacement at the end (x ¼ 0) can be expressed in terms of series
solution by

s0x ¼
X

n

sn
x

��
x¼0
¼ m

X
n

AnSn
x e
�iot,

v0 ¼
X

n

vnjx¼0 ¼
X

n

AnUn
y e
�iot. ð12Þ

Completeness of the series expansion is recalled here (e.g., Ref. [7]) for justification of the general validity of
Eqs. (12). Combining expansion (12) with the end condition (10) will lead toX

n

AnSn
x ¼ A0 SðyÞ,X

n

AnUn
y ¼ 0. ð13Þ

Now we multiply the first of Eq. (13) by Um
x and the second of Eq. (13) by Tm

xy, where m stands for mth mode,
which leads to X

n

AnSn
xUm

x ¼ A0SUm
x ,X

n

AnTm
xyUn

y ¼ 0 ð14Þ

and integrate Eq. (14) over the cross-section to yieldZ h

�h

X
n

ðAnSn
xUm

x Þdy ¼ A0

Z h

�h

ðSUm
x Þdy,

Z h

�h

X
n

ðAnTm
xyUn

yÞdy ¼ 0: ð15Þ

Next, we subtract the first of Eq. (15) from the second and interchange the integral and the summation
operators to obtain an equation

X
n

Z h

�h

ðAnTm
xyUn

yÞdy�
X

n

Z h

�h

ðAnSn
xUm

x Þdy ¼ �A0

Z h

�h

ðSUm
x Þdy. (16)

Rearranging Eq. (16) results in

X
n

An

Z h

�h

ðTm
xyUn

y � Sn
xUm

x Þdy ¼ �A0

Z h

�h

ðSUm
x Þdy. (17)
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The bi-orthogonality property of the wave modes [2]Z h

�h

ðTm
xyUn

y � Sn
xUm

x Þdy ¼ 0 for nam (18)

enable one to simplify Eq. (17) by retaining on the left-hand side only terms with m ¼ n and allowing omission
of the summation over n

Am

Z h

�h

ðTm
xyUm

y � Sm
x Um

x Þdy ¼ �A0

Z h

�h

ðSUm
x Þdy. (19)

From Eq. (19), the complex coefficient Am can be deduced directly in the form

Am

A0
¼ �

1

Jm

Z h

�h

ðSUm
x Þdy, (20)

where

Jm �

Z h

�h

ðTm
xyUm

y � Sm
x Um

x Þdy. (21)

Here, Jm and Ux
m are both properties of the mth wave mode.

An analogous derivation for the displacement excitation (11) leads to amplitude ratios

Am

A0
¼ �

1

Jm

Z h

�h

ðUSm
x Þdy. (22)

The mean total rate of doing work of the external excitation (per unit length in the z direction and average
over strip width 2h) is defined by [4]

hPi �
1

T

1

2h

Z T

0

Z h

�h

ðs � _uÞdydt (23)

with T ¼ 2p/o. For harmonic waves, Eq. (23) will take the form

hPi ¼
X

n

hPni ¼ �
1

4h
om
X

n

jAnj
2 ImfJng, (24)

where the sum is taken over the n propagating modes available at the particular frequency o. The proportion
of the energy Em communicated by the mth propagating mode is then [2]

Em �
hPmi

hPi
¼
jAmj

2 ImfJmgP
n

jAnj
2 ImfJng

. (25)

Calculation of energy partition according to Eq. (25) requires finding real valued wavenumbers for any
frequency by the numerical solution of Rayleigh–Lamb equation (7), evaluation of integrals (21), and either
Eq. (20) or (22).

4. Results

At first, four simple excitation forms, defined by the functions F,

FðyÞ ¼ A0 uniform; (26a)

FðyÞ ¼ A0 cos
p
2

y

h

� �
half�cosine; (26b)

FðyÞ ¼ A0 1�
y

h

� �2� �
parabolic; (26c)
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FðyÞ ¼ A0 cos 2p
y

h

� �
two�cosine (26d)

were examined for both stress (10) and displacement (11) excitations. Functions described by Eqs. (26b) and
(26c), for reasons to be clarified later, will be termed moderately non-uniform excitations. Substitution of each
of these functions, in turn, into relation (20) for a stress excitation, followed by integration, lead to

Am

A0
¼ �

1

Jm

4

p
dm
1

Gm

sin
p
2
Gm

� �
þ

dm
2

Dm

sin
p
2
Dm

� �� �
, (27a)

Am

A0
¼ �

1

Jm

4

p
dm
1

ð1� G2
mÞ

cos
p
2
Gm

� �
þ

dm
2

ð1� D2
mÞ

cos
p
2
Dm

� �" #
, (27b)

Am

A0
¼

1

Jm

16

p3G3
mD

3
m

dm
2 pG

3
mDm cosð

p
2
DmÞ þ dm

1 D
3
m pGm cos

p
2
Gm

� �
� 2 sin

p
2
Gm

� �� �
� 2dm

2 G
3
m sin

p
2
Dm

� �h i
,

(27c)

Am

A0
¼

1

Jm

4

p
dm
1

16� G2
m

	 
 sin p
2
Gm

� �
þ

dm
2

16� D2
m

	 
 sin p
2
Dm

� �" #
(27d)

for each function (26a–d), respectively. Here, Gm, Dm, dm
1 , and dm

2 are mode-dependent variables given in
Eqs. (A.6) and (A.8). Evaluation of Eq. (22) reveals that relations (27) are valid also for displacement
excitation (11) with the same functions (26) after replacement of dm

1 and dm
2 by dm

7 , and dm
8 , respectively.

The relative amplitudes (27), integral (21), and the energy partition (25) were calculated for the real roots
(wavenumbers) of the symmetric Rayleigh–Lamb equation (7) for Poison’s ratio v ¼ 1

4
and for a non-

dimensional frequency range 0oOo8 (the non-dimensional frequency is defined in Eq. (A.5)). The resulting
frequency map is recapitulated in Appendix B for reference. Owing to linearity of the problem, together with
the symmetry of boundary conditions along the long faces y ¼7h, the field equations are decoupled to
symmetric and antisymmetric equations as evident from the Rayleigh–Lamb equation (7). Mathematically,
this means that antisymmetric modes cannot contribute to a symmetrical field. Physically, that implies that
symmetric excitation generates only symmetric modes. Therefore, for purely symmetric excitations examined
here only symmetric fields need to be considered.

Fig. 2 shows the variation of the energy partition among the propagating modes as a function of frequency
for a uniform displacement excitation (26a). This plot reproduces well the previous result given by Gregory
and Gladwell [2]. Since only one propagating mode is available up to frequency 1.6371 (no energy partition
takes place), all forthcoming graphs begin at frequency 1.6.

Energy partition for the case of uniform stress excitation is shown in Fig. 3. This result is to be compared
(after appropriate frequency scaling) with the results for uniform displacement excitation shown in Fig. 2 and
with the results for a uniform pure stress excitation (1) given by Torvik and McClatchey [1]. Except for a small
frequency range, 1.63oOo1.73, the pattern for uniform displacement closely follows the pattern found in
both of the aforementioned cases of uniform excitations. The frequency range of 1.63oOo1.73 is the region
where three modes are available while the third mode has a negative phase velocity (see Ref. [8] for details and
interpretation). Owing to the scale of the plot in Ref. [1], it is impossible to make a more detailed comparison
between the two excitations in that sensitive region.

Figs. 4 and 5 trace the energy partition among the available wave modes for displacement and stress
excitations with the half-cosine form (26b), respectively. Up to frequency 1.63 and above 2.5, the energy
partitions for stress and for displacement excitations are similar. Although the peaks in Figs. 4 and 5 are sharper
than the maxima in Figs. 2 and 3, dominance of the mode with a wavenumber equal to the frequency of
excitation is preserved for this type of non-uniform excitations, except for a frequency range of 1.63oOo2.5.

The parabolic excitation (26c) reveals that the energy partitions are almost identical, both qualitatively and
quantitatively, to the half-cosine patterns in Figs. 4 and 5. This is true even within the sensitive range
1.63oOo1.73 and, therefore, are not shown here. This result can be attributed to the close similarity of the
excitation functions (26b) and (26c).
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Fig. 3. Energy partition for uniform stress excitation.
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The partition of energy for a non-uniform displacement excitation (26d) is shown in Fig. 6. Here, the
pattern of energy partition markedly differs from the pattern found for uniform and moderately non-uniform
excitations, with two new features. One feature is a complete dominance of one of the available modes, which
conveys 100% of the absorbed energy (the third and fourth modes at frequencies 4 and 4.8, respectively). That
complete dominance differs from previously observed dominances where the dominant mode delivered up to
90% of the energy. The second feature is that, at a few frequencies, dominance sets on from the very frequency
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at which a new wave mode is available, and is accompanied by the complete nullification of energy delivered
by all other available modes. That phenomenon occurs at frequency 4 in Fig. 6 for a displacement excitation,
and for a stress excitation of the same form (26d) (not shown here).

For further examination of the phenomenon of complete dominance of a single mode, the strip response to
three special excitation functions was calculated. The excitation form is taken to be identical to one of the
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Table 1

Coefficients for stress distribution (28) for three modes available at frequency O ¼ 1.66

Wavenumber ki C1 D1 C2 D2

k1 ¼ 1.44123 14.3436 1.29384 �5.07282 1.69079i

k2 ¼ 0.72436 �1.96793 0.985774 1.34602 2.34617

k3 ¼ 0.36324 �1.18242 1.39314 0.532545 2.54433
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three available modes at the frequency O ¼ 1.66 given by

SðyÞ ¼ C1 cos D1
y

h

� �
þ C2 cos D2

y

h

� �
, (28)

where the coefficients C1, C2, D1, and D2, for each mode are given in Table 1. The frequency of 1.66 is chosen
to lie within the range of existence of a backward wave region that appeared to be very sensitive to end data.

The energy partition for these three excitations is given in Figs. 7–9. As expected, complete dominance of
one mode corresponding to its excitation form is observed at O ¼ 1.66. This agrees well with our experience
with Fourier’s theorem. Complete dominance of a single mode at higher frequencies where the form of the
dominating wave mode deviates significantly from the excitation was less expected. This probably reflects the
more subtle nature of bi-orthogonality relation (18) and will be further discussed in Section 5. A displacement
type excitation for functions (28) reveals the same similarity between energy partition for stress and
displacement type excitations. That result, along with analogous similarities for earlier evaluated functions
(26), suggests that for mixed end data, both stress and displacement excitations of the same form result in a
similar partition of energy.

5. Discussion

The different excitation forms examined expose rich variability in patterns of energy partition among the
available wave modes. Nevertheless, some regularity can be inferred from the graphs, with additional support
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from the following reformulation of the energy partition expression (25). Rearranging Eq. (25) will yield

Em ¼
1

jA1j
2 ImfJ1g

jAmj
2 ImfJmg

þ � � � þ
Am�1j j2 ImfJm�1g

Amj j
2 ImfJmg

þ 1þ � � � þ
jAnj

2 ImfJng

jAmj
2 ImfJmg

. (29)
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Recalling Eq. (20), each term in the denominator of Eq. (29) can be further rewritten as

jAl j
2 ImfJlg

jAmj
2 ImfJmg

¼
Jm

Jl

����
����
2
ImfJlg

ImfJmg

R h

�h
ðSUl

xÞdy
��� ���2R h

�h
ðSUm

x Þdy
��� ���2 ; l ¼ 1; 2; 3; . . . ;N (30a)

for stress excitation, and as

jAlj
2 ImfJlg

jAmj
2 ImfJmg

¼
Jm

Jl

����
����
2
ImfJlg

ImfJmg

R h

�h
ðUSl

xÞdy
��� ���2R h

�h
ðUSm

x Þdy
��� ���2 ; l ¼ 1; 2; 3; . . . ;N (30b)

for the displacement excitation, after the use of Eq. (22). The ratios in Eqs. (30) are functions of the modal
properties Jm and Ux

m (which are frequency dependent) and of the form of the excitation, either SðyÞ or UðyÞ.
The reciprocal-like relations between displacement and stress excitation forms, as are evident from Eqs. (30),
appear to be associated with the almost identical partition patterns for stress and displacement-type
excitations of the same form.

Two deviations from perfect matching of the energy partition patterns for the two types of excitations
(stress and displacement) can be noticed. One is of the kind observed at frequency 5.2 (3

ffiffiffi
3
p

) for uniform
excitations in Figs. 2 and 3 and at frequency 4 for a half-cosine excitations in Figs. 4 and 5. The differences
here are limited to a very small range and can be related to the emergence of an additional propagating mode
above the cut-off frequency (see frequency map in Appendix B). The second difference is in the frequency
range of 1.63oOo

ffiffiffi
3
p

. This small frequency range appears to be extremely sensitive to end conditions, as is
evident from all patterns shown here which exhibit a large variance in patterns within this range.

The similarity of the energy partition pattern for uniform excitations of the mixed type (stress and
displacement) and the pure stress excitation (shown in Ref. [1]) are of interest. That similarity was commonly
accepted as valid a few decades ago (e.g., Ref. [9, p. 19] and recently Ref. [10, p. 198]) with an illuminating
work of Karal and Alterman [11]. Since there is no closed form solution for pure stress conditions (1), Torvik
and McClatchey used a variational formulation to solve the problem. For the same reason, there is no
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expression equivalent to Eq. (30) that could possibly illuminate that similarity. Yet, this similarity raises a
question of how general that assertion can be and whether it stays valid for any excitation form.

The parabolic and the half-cosine forms show almost identical energy partitions with some deviation from
the pattern found for the uniform excitations. A closer inspection reveals that the qualitative observation of a
dominating mode with kEO, observed first by Torvik and McClatchey for uniform excitation, is retained for
these moderately non-uniform excitations.

The dominance-pattern characterizing the moderately non-uniform excitations is limited to up to about
90% of the total energy conveyed by one of the modes. Non-uniform excitations, on the other hand, exhibit a
phenomenon of complete dominance of one of the modes conveying 100% of the energy absorbed by the strip.
That phenomenon occurred both when the excitation form exactly fit one of the modes (Figs. 7–9 at frequency
1.66), as could be expected based on the experience gained through the Fourier theorem, but also for
excitations with dissimilar forms (Figs. 6–9 at higher frequencies). The first case can easily be inferred from
relations (29) and (30) by observing the integrals in Eqs. (30a) and (30b) to be of complete dominance for
excitations which exactly fit one of the modes. Then, all other terms will have a negligible contribution to the
denominator in Eq. (29). The physical reasoning behind the other instances of complete dominance observed
is still to be exposed.

We conclude our discussion with a possible implication of the dominance-pattern of the mode with kEO
found to characterize uniform and moderately non-uniform excitations. To that end, we consider first
excitations having a frequency below O ¼ 1.63, where only one propagating mode is available. Now recall
(e.g., Ref. [12]) that the far-field response is determined uniquely by the following quantities: frequency,
material properties, and wavenumber of any available mode for a given frequency along with its amplitude
(can also be inferred from Eq. (9)). For a chosen frequency (in the assumed frequency region) and symmetric
excitation, a single wavenumber is obtained through the frequency equation (7). Then, the only parameter left
to fix in Eq. (9) to obtain a unique result is the amplitude. The amplitude of this propagating mode can be
found from Eq. (25) by

jA1j
2 ¼

hPi

�1
2
om ImfJ1g

. (31)

This leads to the conclusion that, for a given strip properties and width, given a symmetric excitation with a
frequency below 1.63, the amplitude is determined by the average power of the excitation. This implies that
same displacement in the far field, given by the first summation in Eq. (9), will be generated for the above set of
parameters, regardless of the excitation type and its spatial distribution (SðyÞ or UðyÞ).

At frequencies above 1.63, several propagating wave modes are available, making Eq. (31) invalid.
Nevertheless, an equivalent result can be shown to hold for special cases. For example, at frequency O ¼ 4,
Figs. 2–5 reveal that most of the energy for the corresponding excitation forms will be communicated by the
third mode with an amplitude given by

jA3j
2 ¼

E3hPi

� 1
2
om ImfJ3g

, (32)

where E3 is approaching 0.9. This implies that, for a given frequency, O ¼ 4 and, given average power of the
excitation hPi, the far-field response will be the same regardless of the details of the spatial distribution of the
excitation, as long as the excitation form can be considered as moderately non-uniform. Based on the results
obtained here, the family of ‘‘moderately non-uniform’’ excitations includes uniform, half-cosine, and
parabolic forms of end excitations.

6. Concluding remarks

The sensitivity of the far-field response of a waveguide to non-uniform symmetric excitations has been
exposed. The energy partition among the available propagating modes is given as a function of the excitation
frequency. It was shown that uniform and moderately non-uniform excitations result in similar energy
partition patterns, suggesting a low sensitivity of the far field to such variability in excitation. Moreover, two
types of mixed end data (axial traction with transverse displacement or axial displacement with transverse
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traction) induce similar responses in the far field. These findings, together with previously reported results on
uniform excitation with pure end data, can be utilized to explain the available experimental data and
numerical reports of a transient response of waveguides to non-uniform excitations (e.g., Refs. [13,14]).

The phenomenon of complete dominance of one mode is found to occur when various non-uniform
excitations are applied to the waveguide. Only a partial explanation of that phenomenon is suggested,
requiring further, more plausible, clarification.
Appendix A. Symmetric wave modes

The displacement field in a waveguide, assuming a series expansion, is written in the form

uðx; y; tÞ ¼
X

n

AnUnðyÞ e
iðxnx�otÞ, (A.1)

where the summation is taken over the all admissible wavenumbers xn. For a symmetric field and waveguide
subjected to plain strain with lateral faces free of traction, the wave modes are given by

UnðyÞ ¼
Un

xðyÞ

Un
yðyÞ

( )
¼

ixn cosðgnyÞ þ Bndn cosðdnyÞ

�gn sinðgnyÞ � iBnxn sinðdnyÞ

( )
(A.2)

with
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gnxn

x2n � d2n
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2i

x2n � d2n
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(A.3)

and
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s
dn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

C2
T

� x2n

s
, (A.4)

where 2h is the width of the strip, and CL and CT are the longitudinal and transverse wave velocities in an
infinite medium. It is convenient to define non-dimensional quantities as follows:

kn �
2h

p
xn; O �

2h

pCT

o;
1

k2
¼

CT

CL

� �2

¼
1� 2n
2ð1� nÞ

, (A.5)

where n is Poison’s ratio and CL and CT are longitudinal and transversal velocities in infinite media,
respectively. The non-dimensional parameters (A.5) for the nth mode lead to
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(A.6)

Substitution of these non-dimensional quantities into relations (A.2), together with Hook’s laws, will give
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with
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and
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Here, the stresses are given by

rnðyÞ ¼
sn

xðyÞ

tn
xyðyÞ

( )
¼ m

Sn
xðyÞ

Tn
xyðyÞ

( )
. (A.10)
Appendix B. Frequency map

Fig. B1 is the frequency map for the purely real wavenumbers k (with exchanged axes to fit the graphs in the
present work) for an elastic material with Poisson’s ratio of 1/4.
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Fig. B1. Non-dimensional real wavenumbers, associated with propagating modes, with a non-dimensional frequency. This is a known

Mindlin frequency map, given in the classical monographs (e.g., Refs. [4,5]) with an inverted axis. The numbers by each branch indicate the

wave mode number according to Meitzler [8].
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